Shape Design of the Duct for Tidal Converters Using Both Numerical and Experimental Approaches (pre-2015)
نویسندگان
چکیده
Abstract: Recently, focus has been placed on ocean energy resources because environmental concerns regarding the exploitation of hydrocarbons are increasing. Among the various ocean energy sources, tidal current power (TCP) is recognized as the most promising energy source in terms of predictability and reliability. The enormous energy potential in TCP fields has been exploited by installing TCP systems. The flow velocity is the most important factor for power estimation of a tidal current power system. The kinetic energy of the flow is proportional to the cube of the flow’s velocity, and velocity is a critical variable in the performance of the system. Since the duct can accelerate the flow velocity, its use could expand the applicable areas of tidal devices to relatively low velocity sites. The inclined angle of the duct and the shapes of inlet and outlet affect the acceleration rates of the flow inside the duct. In addition, the volume of the duct can affect the flow velocity amplification performance. To investigate the effects of parameters that increase the flow velocity, a series of simulations are performed using the commercial computational fluid dynamics (CFD) code ANSYS-CFX. Experimental investigations were conducted using a circulation water channel (CWC).
منابع مشابه
Increasing accuracy of TPXO global tidal model using TELEMA numerical model in Bushehr Bay
Abstract Several methods have been developed such as experimental methods, numerical and computational models for studying the prediction of water level. The purpose of this research is to evaluate and verification Telemac's numerical tidal model in Bushehr Bay waters using measured data. In this regard, the Telemac 2D module has been used to simulate the tide in a A course, 15 days from 01/08...
متن کاملNumerical and Experimental Investigations for Design of a High Performance Micro-hydro-kinetic Turbine
Design and manufacturing of a high performance micro-hydro-kinetic turbine is discussed in the present paper. The main goal is manufacturing an equipped experimental model of hydro-kinetic turbine with highest energy absorption from water current. A multi-shape ducted turbine comprised of a multi-part diffuser was manufactured that can be converted to many experimental models for studying vario...
متن کاملتاثیر جزر ومد بر رفتار بلند مدت مورفولوژی در حوضچههای وسیع جزر و مدی
Tidal basins are described by major features such as tidal flat, tidal channel, intertidal area, and tidal prism, which have been formulated by some empirical relations based on field observations. Although empirical relations explain some morphological patterns, those are not applicable to all conditions. Due to the lack of observations for different areas and under different geophysical condi...
متن کاملStudy of NACA 0015 for Diffuser Design in Tidal Current Turbine Applications (TECHNICAL NOTE)
Tidal energy is the most foreseeable form of renewable energy. Tidal energy can be harnessed by tidal barrage, tidal fence and tidal current technologies. Present efforts are focused on diffuser augmented tidal turbines that exploit the kinetic energy of the tidal currents. The power output by a tidal turbine is directly proportional to the cube of velocity of incoming fluid flow. Thus, even a ...
متن کاملNumerical and Experimental Investigation of the Effect of Different Orientation Angles on Crash Behavior of Composite Hat Shape Energy Absorber
Car body lightening and crashworthiness are two important objectives of car design. Due to their excellent performance, composite materials are extensively used in the car industries. In addition, reducing the weight of vehicle is effective in decreasing the fuel consumption. Hat shape energy absorber is used in car’s doors for side impact protection. The aim of these numerical models and expe...
متن کامل